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Modified Khuri Series and its Convergence for a Single Yukawa Potential* 
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The Khuri series for the partial-wave amplitude has been modified in such a way as to explicitly single 
out the Born term. In deriving this modified series it is shown that one needs weaker asymptotic conditions 
on the partial-wave amplitude than those used by Khuri. The convergence of these series has been investi
gated for the case of a single Yukawa potential. I t is found that the modified series converges considerably 
faster than the Khuri series. 

I 
I. INTRODUCTION 

T has been shown by Regge1 that for a superposition 
of Yukawa potentials of the form 

V(r) 
•/ mi 

<#)(€-**/r)&n (1) 

the partial-wave amplitude is meromorphic in the right-
half X plane and has the asymptotic form 

Afo)~C(s)e-^/xfk, ReA>0, |X| —> oo , (2) 

where \ = 4 + | , 5 is the energy, and 

^=coshrl(l+mi2/2s), 

mi being the lower limit of the integral in Eq. (1). 
From this, using the Sommerfeld-Watson transfor
mation, Regge obtained, for the scattering amplitude, 
the representation 

/M= -i *» A(\,s) 
X<ftPx_j(-z)-

+*-£ 

COSTTX 

N 2/3B(5)XKPX n_j(-z) 

cosirXn 
(3) 

where (3n are the residues of the poles AQK,S) at X=X» 
=o£w+J. Using the above results and considering the 
subclass of potentials (1) for which the amplitude is 
also meromorphic in the left-half X plane, with the 
additional assumption 

Afo)~C'(s)e-*b/y/\, ReX<0, |X|~->QO, (4) 

Khuri2 has found the following expansion for the partial-
wave amplitude: 

e—(l—<Xn)H 

A (l,s) = Yl @n(s) , with / an integer. (5) 
all poles I—an 

In the remainder of this section we examine certain 
aspects of Eq. (5). In Sec. II we modify this formula, 
starting from weaker asymptotic conditions on A (X,s). 

* Work done under the auspices of the U. S. Atomic Energy 
Commission. 

1 A. Bottino, A. M. Longoni, and T. Regge, Nuovo Cimento 23, 
954 (1962). 

2 N. N. Khuri, Phys. Rev. 130, 429 (1963). 

Finally, in Sec. I l l , we examine the rate of convergence 
of Eq. (5) as well as the modified expansion of Sec. II 
for the case of a single Yukawa potential. 

Now for the sake of simplicity let us consider Eq. (5) 
for a single Yukawa potential, 

V(r) = -g(e-mir/r). (6) 

The ideas can be easily generalized if the potential is 
of the form of Eq. (1) and behaves as 1/r near the 
origin. It is well known3 that as s —> 00, an—> — n, n 
being a positive integer, which is the asymptotic 
solution of the Coulomb potential case. Furthermore, 
as 5 —» 00 one needs to consider only the behavior of 
the potential near the origin, so that the values of the 
residues as well as the poles for potential (6) approach 
that of the Coulomb case for sufficiently large s. The 
residues of the partial-wave amplitude in the case of 
the Coulomb potential V — — g/r are4 

£»(*) = 
1 ( - i )» / ( w -1 )1 

2*\A T(-n+l+ig/\/s) "2s' 
(7) 

so that asymptotically the residues for potential (6) are 

0.W->«/&. (8) 

By assuming that for $ -
the Born term 

A(l,s)~^Qi(l+ 
2s \ 2s 

00 the series (5) reduces to 

m-t 

) • 
(9) 

Khuri2 was able to find the correct asymptotic behavior 
of the residues [Eq. (8)]. Thus the series (5) does indeed 
converge to the Born term at high energies. For prac
tical purposes, however, the series (5) is not suitable 
at high energies because in that case it reduces to 

A n ^ g •£ exP["(^W\A] 
A (ljS) —> — X) > (10) 

*-K0 25 n-i l+n 
and the convergence is very slow. One might argue that, 
in contrast to the high-energy behavior (8), at inter
mediate energies the residues (3n(s) may decrease for 

3 See, for example, S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 
(1962). 

4 V. Singh, Phys. Rev. 127, 632 (1962). 
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poles further to the left in the X plane, improving the 
rate of convergence. Our numerical solution of the 
residues, utilized in testing the convergence of the 
series, shows that this is not the case, and at any given 
energy the different residues are generally of the same 
order of magnitude. Aside from this difficulty, it seems 
plausible that, for large | X |, A (\s) should approach 
the Born approximation, which for negative X will be 
dominated by the largest masses in the exponential. 
So, for a superposition of Yukawa potentials the 
asymptotic condition (4), which emphasizes the longest 
rather than the shortest range component, seems to be 
too strong an assumption. These arguments suggest the 
need for a modification of the Khuri series in such a 
way as to single out the Born term and also de-empha
size the contribution of the pole terms further out in 
the left-half X plane. In the next section we give a 
derivation of such a modified formula. 

II. MODIFICATION OF THE KHURI SERIES 

In this section it is assumed that the reader is familiar 
with Khuri's paper. For the sake of simplicity we 
consider a potential of the form 

* gie~~mir 

V(r) = — E , for Mi+i> Mi. (11) 

Instead of assumptions (2) and (4), we make the weaker 
assumption that 

* gi / M?\ 
^(M)-E -QxJ l+—)~C(s)<r*/V\, 

«-i 2s \ 2s/ 
IXI —> oo , (12) 

where (^coshr^ l+w 2 / ^ ) , m being arbitrary for the 
moment. Starting with Eq. (3) and adding and sub
tracting the Born term, we obtain 

/&*)=— / Xd\— E ftGv-i( 1+—) 
2s J ~.ioo COSTX * - I \ 2s/ 
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where J= — 2s(l— z). For the remaining part of Eq. (13), 

J —too 

r*» Px-»(-«) 
\d\ — 

cos?rX 

r ' * gi / m%\] 

(15) 
»=i COSTTX» 

we follow the same procedure as Khuri. Equation (15) 
can be written as 

Ms,z) 
ir(2F2 

X J d\\ 
J —too L. <-i2s {<)} 

00 e^sinhxdx 

xf 
Jl (coshs-z)3 '2 TT(2)3/2 

r 0 0 r • * gi / « A i 

'•5. e^sinhxdx 
v £ — m (16) 

COS7rXw (cOShx— Z)m n -1 

For the first term on the right-hand side, we close the 
contour to the left in the X plane, and in addition to the 
pole terms of A(\s) we pick up the poles of the Q 
functions. For the second term we close the contour 
to the right in the X plane, and we pick up only the 
poles of A (\s). The result is 

1 r00 eXn* smhxdoc 

/»M=— E fin] V2* left poles 

1 * 1 * gi oo / fwA f{ 

V?*-l2$n-l \ 2s/Jt 

g (cosh#— z)m 

A r^ e~^n-^x sinhxdx 

t*ia 

7 • 
\d\-

Px-i(-z) 

COSTTX 

r * gi / » A i 

2s / J i (cosh#—z)m 

* e^nX sinhxdx 

+ i r £ . (13) 
n-1 COSTrXn 

For the first integral in Eq. (13) we close the contour 
to the right and immediately obtain 

* °° g% f mt\ 
/iM=Z £ (2/+i)P,(*)Wi+—) 

2s \ 2s/ 1=1 i«o 

* gi 

= E - — - , (14) 

V2i right poles ./_<», (coshtf— z ) 3 / 2 

w Px„-}(-z) 
+ T £ 2/3„X„ . (17) 

n=l COS7rXM 

The partial-wave amplitude is given by 

1 fl 

A (l,s)=~ I f(s,z)Pi(z)dz, with / an integer, (18) 
2./-.1-

where f(s)z)=f1(s,z)+f2(s)z). From (18), (17), and 
(14) we obtain 

AQ,s)= E +E1Q/l+—) 
all poles / — a n i*=l2s \ 2s / 

-Z-E PnJ 1+— . (19) 
#-l2Sn-l \ 2 j / / + » 
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FIG. 1. (a)-(l). Real and imaginary parts of S versus the number of terms in the expansion. A Eq. 
O Eq. (210 with m=*mi; • Eq. (21') with m = 2mi. 

(5'); 

N o w le t u s consider E q . (19) for t h e ease of a single 
Y u k a w a poten t ia l V(r) — —germir/r: 

pne-(l~-anH g oo 
Mhs)= E 

all poles 1—an 2s 

X-

£ PnJ 
n=X \ 

1+—J 
2s/ 

l+n 2s 
(20) 

For £=£i, the last two terms exactly cancel, so that, 
mathematically, series (20) is identical with Khuri's 
series if £=£i=cosh~Hl+*»i2/2s). In deriving Eq. (20), 
however, we have used a weaker assumption than the 
one used in Khuri's paper. Two immediate advantages 
of Eq. (20) over the Khuri series are immediately 
apparent. At high energies the first two terms on the 
right-hand side cancel, and we simply obtain the Born 
term. Also at large values of / the two summations are 
small, and the Born term stands out as it should. 

There is a one-to-one correspondence between the 
terms in the two summations, and in practice the first 
N terms of each summation are used. By considering 
the first N terms we obtain the approximate expression 

A(1,S)~Z fin £ PnM+—~) 
~ »-i \ 2s f l- 2s i 

X + - Q i ( l + — J. (21) 
l+n 2s \ 2s) 

Here we make the conjecture that6 in Eq. (12), 
w2=4wi2. For ReX>0, this seems to be correct, because 
once the Born term is taken out of f(s,t), the dispersion 

5 Geoffrey F. Chew (private communication). 

integral6 in t starts at t=4m-?. The asymptotic behavior 
of A(k,s) for ReX<0, |X| —> oo is not known, and Eq. 
(12) with w2=4mi2 is the weakest asymptotic behavior 
that we can afford and still be correct in the right-half 
X plane. It is seen from the numerical calculations given 
at the end of this paper that for a single Yukawa 
potential we obtain a rapidly convergent series, which 
supports the above conjecture. Here we would also 
like to remark that m2=4mx2 correctly implies that the 
left-hand cut in s for A(l,s) in the region —m^<s 
<— im^ is entirely due to the Born term. 

Finally, in the case of potential (1), Eq. (19) should 
be generalized to 

Al,s)= £ 
/3««r(*-a»>* 1 r°° 

I '(rid&fl+j) 

- / 'Mdv £ PnJ 1 + - , 
2sJmi «**i \ 2s/ l+n 

all poles I—an 

+ 

where 
Z=coslarlQ.+ (4mia/2s)). 

III. NUMERICAL CALCULATIONS 

(22) 

In this section we shall present the results of our 
numerical calculations applied to series (5) as well as 
to series (21). For our purposes it is more convenient 
to work with the 5 matrix rather than with the ampli
tude. Series (5) for the S matrix, taking the first N 
terms, is 

jy g— (I— ocn)h 

S ( / , * ) = l + £ / 9 . •, (5') 
n=l I—-an 

6 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B. 
Treiman, Ann. Phys. (N. Y.) 10, 62 (I960). 
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and instead of (21) we have 

S(l,5)=i+E - E P J H ^ 

X —+-—Oi(l+-—L 
l+n .y/s \ 2s/ 

since 
S(l,s) = l+2iy/sAQ,s). (21') 

In Eq. (5') and (210 Pn(s) are now the residues of 
the partial-wave S matrix rather than the partial-wave 
amplitude. 

In Fig. 1 (a)-(l), a plot of the real and imaginary 
parts of the S matrix versus the number of terms in the 
expansion for the Khuri series as well as for our series 
(21) for both m-m\ and m2=4mi2 is given. The 
horizontal lines correspond to the actual values of the 

I. INTRODUCTION 

IN this paper the cross section for the general reac
tion (pseudoscalar meson+nucleon—-» spin-| baryon 

+vector meson) is calculated by assuming that the 
reaction is dominated by the exchange of pseudoscalar 
and vector mesons. In Sec. II, we derive expressions 
for this cross section, and for the decay angular dis
tributions for the final baryon and vector meson. 
Section III contains a discussion of the structure of 
the form factors that appear in these expressions. In 
Sec. IV we use the results of the preceding sections in 
an analysis of the reaction w~~p —» 2°^*°, which analysis 
is an extension of one reported earlier.1 

II. CALCULATION OF CROSS SECTIONS 

We will use the conventions #= 6= 1 , g^=( l ? —-1, 
- 1 , - 1 ) , J ^ = ^ 0 B ° - A v B , {iW}*=2g»\ *»*=# 
XDYVK*],

 an<l 'y5=707V73. Also, eppx, is a completely 

* Work done under the auspices of the U. S. Atomic Energy 
Commission. 

1 Gerald A. Smith, Joseph Schwartz, Donald H. Miller, 
George R. Kalbfleisch, Robert W. Huff, Orin I. Dahl, and Gideon 
Alexander, Phys. Rev. Letters 10, 138 (1963). 

S matrix. The Regge parameters used in the series as 
well as the actual 5-matrix values have been calculated 
by numerical integration of the Schrodinger equation, 

The fact that for g=5 the agreement is not quite as 
good as for g=1.8 may be due to small errors in the 
residues. For stronger potentials our numerical calcu
lation of the residues is less accurate. And for g=5 it 
turns out that, in some cases, only a few percent error 
in the residues introduces a considerable error in the 
values of the real or imaginary parts of the 5-matrix 
calculated from the series. 
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antisymmetric tensor, which is + 1 when (jxvkor) is an 
even permutation of (0123), —1 when it is odd, and 
zero otherwise. All spinors will be normalized so that 

Let us begin by considering the reaction Erp -* 
Aw—> (w~~p)(ir*"if~w0). Other reactions of the general 
form (pseudoscalar meson+nucleon—>spin-f baryon 
+vector meson) will have the same results, except for 
a possible over-all numerical factor for isotopic spin 
and a possible modification for different decay inter
actions for the final particles. Let p, r, JET, Q be the 
momenta of the target nucleon, incident pseudoscalar 
meson, final baryon, and vector meson, respectively, 
Define two additional momenta, k=H—p=r—Q and 
s=p+r=H+Q, so that k% and s2 are the squares of 
the invariant momentum transfer and of the total 
center-of-mass energy, respectively. Let m, rh be the 
masses of the target nucleon and incident pseudoscalar, 
M, M the masses of the final baryon and vector particle, 
and vp and vv the masses of the exchanged pseudoscalar 
(K) and vector (K*) mesons, respectively. Then the 
most general Feynman amplitudes that can be written 

P H Y S I C A L R E V I E W V O L U M E 1 3 3 , N U M B E R 4B 24 F E B R U A R Y 1964 
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The cross section for the general reaction (pseudoscalar meson -r-nucleon —»spin—J baryon+vector 
meson) and the decay angular distributions for the final baryon and vector meson are calculated under the 
assumption that the reaction is dominated by the exchange of pseudoscalar and vector mesons. The results 
are applied to an analysis of the reaction iTp —> S°J^*°. 


